Facebook已经将机器学习运用到其流行的社交网络中,比如说决定用户会在News Feeds中看到什么内容。不过相比起当时前沿的神经网络成果,这不过是小儿科。
一些Facebook工程师也一直在尝试积卷神经网络(CNNs),这是一种非常强大的机器学习,现在普遍被用于图像识别。即便人工智能还处于发展初期,Zuckerberg对它的潜力非常看好,因此他从谷歌大脑(Google Brain)挖了一位叫做Marc Aurelio Ranzato的工程师。然后他追本溯源找到了积卷神经网络的发明者——Yann LeCun。
Facebook人工智能实验室负责人Yann LeCun是人工智能界的一个传奇。他最早在1988年在贝尔实验室担任研究员(由电话之父Alexander Graham Bell创立,并因其在电信技术领域的无数领域的实验而闻名)开始他的研究,然后在AT&T实验室担任部门主管直到2003年。那之后他开始在纽约大学任教。现代的卷积神经网络是 LeCun职业生涯的巅峰之作。你是否曾经好奇过ATM怎么能识别你的支票?这就得益于 LeCun负责的“SN”的神经网路模拟器的早期研究,于1996年被采用。
“我开始和Schroepfer 和Mark接洽,我想他们也许喜欢我向他们讲述的东西”,LeCun在接受《Popular Science》采访中说道:“他们试图说服我来运作这个实验室……当像Mark 那样的人跑过来和你说:‘好吧,你基本上接受了全权委托。你能组建世界一流的研究室,我希望你建立起全世界最好的人工智能研究实验室’。我的回答将会是:‘嗯,相当有意思的挑战。’”
关于世界顶级的研究室是什么样子,Yann有自己的想法。如果你想要吸引顶尖人才,你得有一个雄心勃勃的研究室,有着雄心勃勃的长期目标。然后你还得给他们工作上的自由权,同时对你的研究你必须持有非常开放的态度。“这和Facebook的信念有几分吻合,Facebook秉持着开放的理念。”LeCun说。
组建团队
这个肩负着Facebook的未来的团队规模很小,由大约 30个研究科学家和15名工程师组成。团队有三个分支:Facebook人工智能研究组的主要办公室位于纽约市的Astor Place,由LeCun管理着一个由20名工程师和研究人员组成的团队。Menlo Park的是一个同等规模的分支。六月,FAIR又在巴黎设立了一个更小的5人组,与INRIA(法国计算机科学与自动化研究机构)合作。还有很多在Facebook其他部门一起合作致力于人工智能发展的团队,例如语言技术团队;FAIR只是主要的研究部门。
这些研究人员和工程师来自科技领域的各个层面,同时当中很多人都曾与Lecun合作过。高等级的人工智能研究并非是一个庞大的领域,而且Lecun的很多学生都创建了人工智能方面的初创公司,它们一般会被像Twitter这样更大的企业收购。
Lecun曾经告诉《连线》杂志,“深度学习实际上是Geofff Hinton,我,还有蒙特利尔大学的Yoshua Bengio之间的一个阴谋。” Hinton在谷歌研发人工智能, Bengio奔波于蒙特利尔大学和数据挖掘公司Apstat之间,而LeCun也与其他行业内的著名企业有千丝万缕的关联。
“当我第一次在贝尔实验室做到部门主管时,我的老板对我说,你需要记住两点:首先,永远不要让自己陷入团队内部的竞争。第二,只雇佣那些比你更聪明的人,”LeCun说。
负责领导语言研究子群的Leon Bottou,是LeCun的一个老同事。他们一同研发了神经网络模拟器,1987年的AmigaOS就是他们的第一个作品。Bottou 2015年3月加入的FAIR,此前他在为微软研究组工作的同时,还致力于机器学习和机器推理的探索。